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Modern-day computers are characterized by a striking contrast between the processing power
of the CPU and the latency of main memory accesses. If the data processed is both large
compared to processor caches and sparse or high-dimensional in nature, as is commonly
the case in complex network research, the main memory latency can become a performace
bottleneck. In this Article, we present a cache efficient data structure, a variant of a linear
probing hash table, for representing edge sets of such networks. The performance benchmarks
show that it is, indeed, quite superior to its commonly used counterparts in this application.
In addition, its memory footprint only exceeds the absolute minimum by a small constant
factor. The practical usability of our approach has been well demonstrated in the study of
very large real-world networks.
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1. Introduction

1.1. Complex networks and their representation

Over the past decade, it has become apparent that networks are an efficient way
to represent and study a large variety of complex systems, including biological,
technological and social systems (for reviews, see, e.g., [1–3]). The strength of the
network approach lies in its inherent ability to discard unnecessary details and
capture the essential structural properties of complex systems. In the complex net-
works framework, interacting elements are represented by the nodes of a network,
and their interactions by edges connecting the nodes. It has been discovered that
there are structural characteristics common to a very large number of networks,
such as short path lengths (the ”small-world” property) and broad connectivity
distributions where a small fraction of vertices (the ”hubs”) have an exceedingly
large number of connections.

There are several computational challenges associated with empirical network
analysis and network simulations. Networks are typically very sparse, high-
dimensional structures. Mathematically, a network can be represented by the ad-

jacency matrix A, where the element aij = 1 if vertices i and j are connected, and
zero otherwise. In case of weighted networks, an edge is associated with a weight.
This can be captured by the weight matrix W , where wij represents the weight
of the edge connecting i and j (wij = 0 signifies the absence of the edge). For
undirected networks, A = AT and W = W T . An example of a simple undirected
network and the corresponding adjacency and weight matrices are shown in Fig.

∗Corresponding author. Email: jjhyvone@lce.hut.fi

International Journal of Computer Mathematics
ISSN: 0020-7160 print/ISSN 1029-0265 online c© 200x Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/0020716YYxxxxxxxx



1 a). It is evident that simply due to memory consumption, such matrices cannot
be directly used as data structures for encoding networks, especially when large
networks are considered. The high dimensionality of the data provides a further
challenge. Typically, empirical analysis of networks involves extracting statistical
quantities related to vertices or edges and their immediate neighbourhoods; some
analysis methods probe larger-scale structures such as densely connected commu-
nities or percolating clusters. These methods may also involve restructuring of the
network by removing edges or permuting the structure, and hence in addition to
minimizing the memory footprint, the utilized data structures should provide fast
means for traversing, adding, and deleting nodes and edges. This requirement is
especially crucial for analysis of networks where the number of vertices N ∼ 106

and number of edges E ∼ 107 (see, e.g., [4, 5]). A visualization of a part of such
a network is shown in Fig. 1 c). Large-scale simulations are also demanding – the
typical approach is to generate a large statistical ensemble of simulated networks
for extracting meaningful statistics, or to average over a large number of runs of
simulated dynamics.

Figure 1. a) A small 4-node network and the associated adjacency and weight matrices. b) The network
implemented as an array of static parts of the data structures representing edge sets, that is, the vectors
of the adjacency matrix. The edge sets are hash tables with hL(k) = n mod k. Collision resolution is not

necessary in this simple example. See the Section 3 for details. c) Visualization of a small (N = 533)
sample of the large social network studied in Refs. [4, 5], illustrating the complexity inherent in network

data.

1.2. Computer memory and caches

It is well-known that during last few decades, the raw computational power of
microprocessors has grown approximately exponentially, as predicted by Moore’s
law. However, less attention has been drawn to the fact that the performance
of memory chips, measured as latency between a load request and the arrival of
the corresponding data into the registers of the processors, has seen very little
improvement. Indeed, the main memory latency can be as high as several hundred
clock cycles of modern CPU:s. The superscalar operation of processors, allowing
them ideally to finish multiple instructions per clock cycle, makes the situation even
worse: as many as a thousand machine code instructions could have been finished
within the time needed for the data to be processed to arrive at the registers.

Modern computer architectures tackle this apparent bottleneck essentially in two
ways. Caches have been introduced between the processor and the main memory.
They comprise of memory significantly faster but more expensive than the main
memory itself. Recently accessed data will be kept in the cache. This approach
relies on temporal locality, which means that the data most probably accessed in



the future is that accessed in the recent past. In modern day processors, the caches
come in a hierarchy of two to three levels of incresing size and latency. They can do
an impressive job; for example, simulations [6] show that cache hit rates of common
CPU benchmark programs are typically as high as 99%.

In another effort to counter the high latency of the main memory, its bandwidth

has been increased steadily. Essentially, many individual memory modules corre-
sponding to adjacent locations are activated simultaneously and their content is
sent to the processor through an extremely fast bus. In order to exploit this, caches
are organized in lines of equal length — typically, 32 or even 64 bytes. Single mem-
ory request leads to the loading of the whole cache line. The phenomenon exploited
here is that of spatial locality : it is probable that the access of a data element is
followed by that of an adjacent one in the near future — perhaps a member of
the same struct or object, or another element in the same vector. Different kinds of
prefetch logic are utilized by processors. For example, two cache misses correspond-
ing to successive memory areas cause automatic loading of a third, immediately
following area in the cache. If the data is processed serially, as in the case of data
streams occurring in multimedia applications or in matrix algebra involving long
vectors, the memory latency bottleneck can be practically eliminated. Depend-
ing on the cost of processing the loaded data, the computation can even become
bandwidth-limited.

The memory latency becomes a problem in cases where the data processed is very
high-dimensional or sparse, but large. This is the common case in network science.
Such data cannot be laid out in memory in such a way that conceptually adjacent
elements — such as connected nodes in a network — would also be adjacent in the
main memory. There is thus no spatial locality to be exploited by the caches. Of
course, temporal locality depends on the exact nature of processing. However, when
large data sets are considered, typical operations, such as following edges on a path
in a network or finding common neighbours of nodes are, on the average, bound
to access non-cached memory. As cache misses are thus unavoidable, the relevant
problem becomes that of finding data structures to minimize their number.

At this point, it is helpful to point out the similarity of the distinction between
fast caches and slow main memory to that between main memory and mass storage.
Indeed, modern hard disks have rather long seek times — of the order of several
milliseconds at best — but the data transfer rates can be as high as a hundred
megabytes per second. Modern operating systems cache disk accesses: the equiva-
lent of a line of a processor cache is a memory page which is the smallest amount
of data read into main memory when the disk is accessed, typically a few kilobytes
in size. On the other hand, not too long ago the amount of main memory available
on computers was so low that it was common to only load a small part of the
data to be processed into the memory, most of it only being stored on a disk. Data
structures found efficient for disk-based processing can therefore provide us with a
good starting point.

2. Implementation basics

As discussed above, networks and their representative adjacency or weight matrices
are mostly very sparse; the network approach to a problem might not be fruitful
otherwise. Thus our task of designing an efficient data structure for encoding net-
works partially reduces to finding an efficient representation for sparse matrices.
The nodes of a network — corresponding to rows and columns of the matrix rep-
resentation — can usually be laid out continuously in the memory as an array.
The indices of nodes only serve as labels, which can always be chosen as integers



from the interval 0 . . . N − 1, where N is the number of nodes in the network. The
same is clearly not true for the content of these vectors, implicitly containing the
indices of adjacent nodes and explicitly e.g. the weights of edges. Thus, finding an
efficient implementation for these vectors associated with nodes and representing
their connections is of our main concern.

The efficiency of the implementation is measured by the memory footprint of
the data structure and the processor time needed for individual operations. Due to
spatial locality, these metrics are often closely related. In addition to usual network
modifications, i.e. removals and additions of edges, there are two operations of great
importance, namely seek and iteration. The former corresponds to checking for the
existence and perhaps the weight of an edge, that is, an element of the adjacency
or weight matrix, whereas the latter corresponds to going through all edges con-
necting to a given node. As the adjacency matrices of networks are very sparse,
the usual approach of going through all N potential elements of their vectors is
doomed to be extremely inefficient. Due to the broad connectivity distributions,
almost all elements are zero for most of the nodes, corresponding to non-existent
edges. When performing standard matrix algebra, basic operations such as addi-
tion and multiplication can exploit the sparsity “inside” the data structures, as
the algorithms for iteration are not visible to the user. However, this is not true
for network science in general: many commonly used algorithms are simply not
reducible to these operations, but call for explicit iteration over the neighbours of
nodes.

In the following, we consider the hash tables which can be used to represent the
node-specific vectors.

3. Hash tables

Typical linked data structures such as trees [7] are simply not efficient enough for
our purpose, as traversing them either during seek or iteration involves repeated
following of pointers, usually referring to memory that is not loaded into the pro-
cessor cache. In addition, there is an allocation overhead for each node, typical
value of which is two machine words [8] — that is, 64 or 128 bits — per node.
The main virtues of trees, ordered iteration and small worst-case access times, are
not very helpful for handling networks. Ordering of edge sets is unnecessary as the
node indices only serve as labels, though it can be exploited, for example, in order
to make sure that each individual edge of an undirected network is iterated over
just once. On the other hand, as we are not interested in real-time computation, it
is only the average time needed for different operations that is of interest to us.

Thus, as a starting point, we choose to lay our data comprising of node indices
— implicit in a non-sparse vector, but explicitly needed here — and possibly corre-
sponding edge weights contiguously in memory. The whole network would then be
implemented as an array of nodes, each containing a pointer to the corresponding
memory area and the number of edges in it.

Iteration over packed array edge lists is extremely fast, as many elements can
usually fit on a single cache line, and the total number of cache misses during the
whole operation is bound by the prefetching logic of the processor. If the elements
are stored sorted according to their indices, the seek operations can be performed
by interval halving, leading to O(log n) time requirement, where n is the number
of non-zero vector elements. This is a common form used by eg. MATLAB R© for
sparse vectors. However, additions and removals of elements require displacing half
of the array, on the average, thus leading to O(n) cost. If we chose to store the
elements unordered, additions could be performed in constant time, but O(n) seek



time would result.

3.1. Hash functions

In general, these kinds of data structures are referred to as sets and maps. In our
application, the keys stored in the sets are just the indices of non-zero elements in
the vectors of the adjacency matrix, that is, the identity of the neighbouring nodes.
In the case of weighted networks, the values the keys map to are the edge weights.
In the following, we refer to keys or combinations of keys and values simply as
elements.

A common solution for efficient implementation of sets and maps is the utilization
of hash tables [7]. Let us take a contiguous array in the memory capable of holding
L elements accompanied by their indices. In addition, a way of marking each slot of
the array either used or unused is needed. When adding an element into this table,
a hash function hL(k) mapping each key to an integer on the interval [0, L − 1] is
utilized to calculate the slot for it. A simple example would be a modulo operation:
hL(k) = k mod L. A network data structure based on hash tables corresponding
to the network of Fig. 1 a) is shown in Fig. 1 b).

3.2. Collision resolution

If the keys were known beforehand, it would be possible to construct a hash function
that would map each key into a different slot in the table, even if L = n. In practice,
this requirement is certainly not met, and different keys may map on a same slot.
Some form of collision resolution is thus needed.

A simple and perhaps the most commonly utilized collision resolution method is
chaining, exemplified in the Fig. 2 a). In this strategy, a slot of the table is not used
to hold the keys and values themselves but a root pointer to a linked list which
holds the individual elements belonging to the slot. It is rather easy to show that
given random keys, chaining results in O(1) average seek cost, if L ∝ n, even with
very simple hash functions. On the other hand, it is always possible to pick a set
of indices in such a way that they all map onto the same slot. Choosing a hash
function that produces approximately even distribution of the keys on the slots
given the possible regularities in the key set is thus of great importance.

For our application, the chaining strategy fails because of the additional latency
involved in following the link pointers on the list. During a seek operation, a small
additional number of cache misses might be quite tolerable. However, iteration
through elements is very slow compared to a sequential memory access, which
might only suffer from one or two cache misses during the whole iteration.

3.3. Open addressing

Another common form of collision resolution is open addressing, which utilizes
the table itself to store the elements that have their initial slot given by the hash
function already occupied. In general terms, a sequence of successive hash functions
h1,L . . . hL,L, each mapping the same key on a different slot on the table is utilized.
For a given key, these functions define a probe sequence spanning the whole table. A
search operation is carried out by applying each hash function successively on the
index and checking the corresponding slot until the key is either found or an empty
slot is encountered. When adding a new element into the table, it is inserted into
such an empty slot. However, removals of elements are a bit tricky in general. The
slot from which an element is removed might be a preferred one for some other key,
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Figure 2. Hash tables with different form of collision resolution. Hash function is h8(k) = k mod 8. In
the tables utilizing linear probing, the initial slots for each key are shown beside the tables. Key 15 is
inserted before the key 7 and keys 2, 3 and 10 in this order. a) Collision resolution by chaining. Newly

inserted elements have been inserted at the tails of the linked lists. b) Linear probing, First
come-strategy. Elements are inserted in the first empty slot found in the probe sequence. c) Linear
probing, ordered hash table. Compared to b), the keys 7 and 15 are now ordered by their numerical

value. d) Linear probing, Robin Hood strategy. The keys 7 and 15 are in their order of insertion, whereas
10 and 3 are both displaced by the same amount from their initial slots.

already in the table. Simply marking the slot as unused would then cause a “hole”
in the probe sequence corresponding to another key, thus terminating a search for
it prematurely. A special mark is thus utilized for slots from which an element has
been removed. Such a slot is then treated as a used one during seeks and as an
empty one during insertions.

The chaining hash table implementation suffers only from a graceful degradation
of performance when the number of elements n exceeds the number of slots L. In
general, however, the table should be rehashed into a larger size when the average
number of elements per slot reaches some given constant. During rehashing, each
element is simply inserted into a new table instance. In order to save memory
space, rehashing to a smaller size can be performed when the number of elements
becomes low. However, this operation can be postponed to certain extent e.g. when
in a performance-critical section of a program. In the case of open addressing, the
limit for the number of elements set by the length of the table is quite hard, the
performance degrading significantly when the fill rate α = n/L of the table gets
near 1.1 For keys randomly distributed in the table, the seek time still only depends
on n and L through α. Thus, for a constant α the seek cost is always O(1), that
is, independent of the number of elements or the size of the table.

It is easy to prove by amortized analysis [9] that the average time needed for
addition of elements is O(1) even if rehash operations are needed. Intuitively, this
can be seen as follows. Let us consider the case in which the table size is doubled
when a limit on the fill rate is reached. Just before a rehash, half of the elements
in the table have been inserted in the table just once, after the previous rehash
operation. Half of the remaining elements have been only rehashed once after their
initial insertion, half of the other half just twice etc. The series converges in such
a way that the total number of insertions into a table of some size is two times the
number of elements in the final one.

1The n in the expression for the fill rate should include the elements marked as removed, also.



3.4. Linear probing

For spatial locality, we choose to utilize the simplest possible form of open adressing,
which is linear probing. The probe sequence is simply such that h1,L(k) = hL(k) and
hn+1,L(k) = (hn,L(k)+1) mod L. Successive slots in the table — wrapping around
to 0 at L — are thus probed until a key is found or an empty slot is encountered.
An example of a hash table utilizing linear probing is shown in Fig. 2 b). In theory,
linear probing is less efficient than more elaborate probing schemes when the fill
rate α is near 1. This is due to clustering in which populated areas in the table tend
to join together when the fill rate is increased. [7]. The fact that successive probes
are very likely to fall in the same cache line is expected to more than compensate
for this handicap. Some experimental proof for this exists in [10]. Interestingly,
linear probing was seen as the preferred solution for external searching for data on
mass storage by Donald Knuth in [7]. It is worth noting here that the asymptotic
time requirement for seek operations of full tables for which n = L − 1 is O(

√
n)

for successful and O(n) for unsuccessful seek operations [7]. 2

Because the probe sequence in linear probing is solely determined by the initial
slot for a key h(k), key removal can be performed efficiently. If a key is removed, the
sequence of following slots is inspected for keys eligible for insertion into the newly
freed slot. If none are found before the next empty slot, then it suffices to mark the
slot of the removed element as free. If an eligible key is found, it is moved into the
freed slot and the process is repeated for its original slot. In this way, there is no
need to maintain a separate count for slots marked as removed, and performance
degradation — and thus, rehash operations — are not caused by removals.

3.4.1. Linear probing variants. Above, we have considered the “greedy” or First

Come form of linear probing, in which a slot is occupied by the first eligible key
inserted in the table, following ones placed further in the probe sequence. [7, 11]
Other alternatives maintaining the validity of probe sequences exist. Most obvi-
ously, insertions may be done in Last Come –fashion, new key k replacing an old
one in its initial slot h(k) [11]. It is also possible to maintain the keys in a table in
a sorted order, a key with the smallest numerical value taking precedence on a slot
when resolving collisions [7,12]. The interesting consequence of this strategy is that
an unsuccessful search can be terminated as early as the corresponding successful
one. Indeed, the slot allocation of a sorted hash table is unambiguous for any given
set of keys, and a seek operation can terminate when the probe sequence passes
the slot in which a key would be placed, if present. Fig. 2 c) shows an example of
an ordered hash table.

It is seldom useful to utilize very large fill rates. The average increase in the
memory footprint of hash tables is only slight when the fill rate — or, in practice,
the rehash limit of the fill rate — is increased from, say, 0.8 to 0.9. The degradation
of performance is large for such an increase, however, as seen from the results
in Ref. [7]. A better reason for cutting down the asymptotical cost of searches
is the clustering phenomenon, which can make the performance more sensitive
to regularities in the data. Chaining strategies only suffer if keys are mapped to
exactly same slots. In the case of linear probing, tendency of keys to map on same
regions of the table can amplify clustering. Utilizing the ordering to minimize the
cost of unsuccessful searches can thus be useful even with more sensible fill rates.

It should be noted that the average length of probe sequences for all keys in a
table is the same under any form of linear probing. This is easily seen by considering

2This case does not correspond to any constant α.



swapping of any two keys that are eligible for insertion in each other’s slots. The
swapping maintains the sum of the lengths of the probe sequences for the keys or
alternatively, the sum of their displacements from their initial slots.

An interesting collision resolution strategy is Robin Hood, in which the key k
to take the precedence of a slot is the eligible one with the largest displacement
from its initial place h(k). Rather intuitively, this is the strategy that minimizes
the variance of the length of the probe sequences keys in a table [11, 13, 14]. This
property can be useful in modern microprocessors. Their pipelined operation is
very sensitive to branch prediction of conditional jumps in the code. [15] If the
processor is able to guess the program flow across the conditionals, processing is
uninterrupted. On the other hand, mispredicted branches cause considerable delays
in processing. Minimizing the entropy of the probe sequence length distribution
should help the branch prediction hardware to work more efficiently.

Although not noted in the cited literature, it is possible to utilize the “ordered”
nature of Robin Hood hashing to cut down the cost of unsuccessful seek opera-
tions, as in the case of ordered hashing. The comparison of numerical key values is
replaced by that of the displacement of keys from their initial slots. However, the
allocation of the keys into the table is not unambiguous as in the case of ordered
hashing — exactly same keys in the same table are not allowed in out application,
but the initial slots for different keys can of course be same. The performance is
thus expected to be slightly worse than in the case of ordered hashing proper: all
the keys mapping to the same initial slot have to be passed before a seek can be
terminated as unsuccessful.

4. Results

The main problem in establishing relevant performance figures for data structures
intended for edge set implementation is the access of non-cached memory. The
building of an edge set for a performance measurement itself results in the structure
being cached. Thus, in general, one would have to construct a large number edge
set instances in order to drop the least recently accessed ones out of the caches,
and then perform experiments on those. However, the exact form of the memory
allocation strategies used by the standard libraries might result in artifical spatial
or temporal locality affecting the results.

At least for the random sets of keys used in our experiments, all hash table
implementations have seek times with no direct dependence on their size. It is thus
possible to simulate uncached seek operations on small tables by those on a single
large hash table instance with the same fill rate. The keys have to be accessed in
a sufficiently random order so that the effect of spatial and temporal locality is
negligible. Gradually decreasing the size of the tables used in measurements will
then serve as the visualization of the effect of caching.

4.1. Benchmark setup

The seek operations of the linear hash tables were benchmarked for tables in sizes
ranging from 16 (24 ) to 268435456 (228 ). For each size, fill rates from 7/16 ≈ 0.44
to 13/16 ≈ 0.81 with spacing 1/16 were experimented on. For the largest table
size considered, only single hash table was used and the number of seek operations
made was equal to the number of keys in the table. For tables of decreasing size,
the number of tables used and that of seek operations per element in the table
were gradually increased so that the total number of seeks per each measurement



point was constant for a given fill rate. Furthermore, all the measurements were
made for both successful and unsuccessful searches.

Here we did not run any benchmarks on addition and removal of keys. This is
due to the fact that the cost of both of these operations reduces to the cost of an
unsuccessful search from an unordered hash table: first, the key or the place for
its insertion is found, and then all the following ones until the next vacant slot are
moved by a single slot.

The table implementation utilized was a set in which the usage status of a slot
was marked by a special “magic value” of the key. Both First Come and Robin
Hood collision resolution strategies were used in the experiments. In order achieve
realistic performance measurements, the multiplicative Fibonacci hash function [7]
was utilized, although even a simple modulo operation would have performed as
well for random keys used, and would have been extremely efficiently implemented
by bit-masking for the table sizes used here.

For comparison, similar benchmarks were run on the set structure of the C++
standard library based on a red-black tree [16] and the set container based on a
chaining hash table found as an extension to the GNU C++ library. The latter is
a direct adaptation of the hash table of the Sun Microsystems Standard Templates
Library (STL). [17] The fill rates used for it varied approximately from 7/12 to 1
for each table size considered.1. Of course, the fill rates are not directly comparable:
the storage efficiency of the linear probing table is much better than that of the
chaining one, due to the space required by pointers and node allocation overhead.
For the red-black tree, the number of elements used in the benchmarking were
simply successive powers of 2.

With one exception to be explained later, all the benchmarks were run on a
3 GHz Pentium 4 platform having 3 GB of memory. The operating system was
Gentoo Linux with kernel version 2.6.9. The GNU C++ compiler version 3.3.5 was
used with the simple -O as the sole optimization parameter.

4.2. Benchmark results

4.2.1. Successful searches. The results for successful searches are shown in Fig.
3 for the linear probing hash table, the STL hash table and the set implementation
of the C++ standard library. As seen in the figure, the linear hash table performs
better for successful seek operations throughout the range of set sizes considered.
The small seek times of the chaining STL hash table for very small set sizes can
be accounted to the rather large minimum size of the table. The higher memory
efficiency of the linear implementation is reflected by the fact that the steep rise
of the seek time corresponding to the structure not fitting in the level 2 of the
processor cache, occurs considerably later than for the STL table. The performance
of the Robin Hood implementation is somewhat less than that of the First Come.
This is due to the additional code used for checking the ordering of the elements,
which might be ineffectively optimized by the compiler.

4.2.2. Unsuccessful searches. The results for unsuccessful seek operations are
shown in Fig. 4. In this case, the dependence on the fill rate is very strong for
the linear hash table with First Come hashing. With the highest rates considered,
the seek time even exceeds that of the chaining implementation. If the maximum

1The table sizes used in this implementation are primes close to 2/3 time successive powers of two. The
smallest table size available is 53
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Figure 3. The average times needed for successful seek operations for the data structures considered.
The characteristic sawtooth pattern resulting from the variation of the fill rate is clearly seen for the
implementations based on hash tables. The sudden rise of the seek times near the center of the graph

results from the largest tables not fitting in the level 2 of the processor cache. The set implementation of
the standard library is based on a tree. The time complexity of the seek operations should therefore be

logarithmic and the corresponding curve to be linear on the semi-logarithmic plot. The regions of
different steepness again correspond to the processor cache: in this case, the effect of the 1st level cache is
also visible. The rise of the curves towards the highest set sizes considered can be accounted to memory

management issues of the operating system.

fill rate were lowered in such a way that the average memory consumption would
be equal to that of the chaining implementation, the linear probing hash table
would again emerge as a clear winner. In any case, the difference in the results
between successful and unsuccessful seek operations is in a nice agreement with
the theoretical predictions presented in Ref. [7]. As expected, the Robin Hood
strategy scores quite a lot better than First Come for unsuccessful seeks.
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4.2.3. Prefetching. In the linear probing hash table, it is highly likely that a
key is found or the search can be terminated on the same cache line as its initial
slot. It is thus possible to utilize prefetch instructions of modern processors to load
the memory area corresponding to the initial slot of a key into the cache, if the
key to be accessed is known suitably beforehand. Ideally, this approach can mask
out the memory latency altogether. Chaining implementations would not benefit
very much from prefetching: although the slot of an element is always prefetched
correctly, the target of the pointer therein can certainly not be prefetched until the
data is in the cache.

The __builtin_prefetch instruction of GCC, translated into the corresponding
instruction of the SSE extension of the machine language was used. The prefetch
instructions were issued 6 seek operations beforehand. Unfortunately, the genera-
tion of Pentium 4 processor that was used for all the other benchmarks has the
rather well-known feature that prefetches of memory locations that cause a TLB
cache miss are ignored. No real performance improvements could therefore be seen
on this platform. A computer with an Athlon 64 FX-51 processor and 1 GB of
memory was employed in the prefetch benchmarks in order to obtain meaningful
results. The computer ran the 64 bit version of the Mandrake Linux; thus the ma-
chine word size was double that in the principal benchmark platform. Successful
searches were performed with the similar procedure as in all other seek benchmarks.
The results are shown in Fig. 5. The overhead associated with prefetching is very
small, as seen in the left side of the figure corresponding to sets fitting entirely in
the processor cache. This overhead also contains the additional evaluation of the
hash function required for prefetching. For the largest set sizes, the prefetching
significantly improves the performance. The exact size of the effect remains un-
clear, however, as the finite amount of the available system memory starts to affect
the results at rather small set sizes. The corresponding results on the primary test
platform were not included in the figure in order to improve the readability: below
the cache size limit, they were very similar to those presented.
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Figure 5. The average time required for normal and prefetched successful seek operations. Prefetches
were issued 6 seek operations beforehand: results were, however, very insensitive to the exact number

used. See the text for details.

In practice, prefetch instructions can be efficiently utilized for example when
calculating the intersection of two sets, i.e. the set of common neighbours of two
nodes. The smaller set is iterated over and each element is searched from the larger



set. The same method would apply to the calculation of sparse vector dot products.

4.2.4. Iteration. The time needed for iterating over the elements of STL hash sets
and linear probing hash tables of different sizes is shown in Fig. 6. The procedures
employed in the iteration benchmark are similar to those used in the seek tests.
The keys found during the iteration were counted to prevent the compiler from op-
timizing away parts of the otherwise effect-free procedure. For large enough tables,
the linear implementation is an order of magnitude faster than its chaining coun-
terpart. If a large number of very small sets were considered, cache miss latency for
the table itself should be added to the time demand of both the implementations.
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Figure 6. The average time required for iterating over a single element in the chaining and linear hash
tables. The memory latencies induced by pointer traversals render the chaining implementation slow for
large table sizes. The large minimum size of the table, in turn, causes the slowness in the limit of very

small sets.

4.3. Comparison with other implementations

In [18] Donald Knuth presents a graph library based on representation of edge sets
as linked lists. Though elegant in implementation, this approach is handicapped by
O(n) access time, node allocation overhead and the high cost of following a pointer
into non-cached memory.

The IGraph library by Gabor Csardi [19] includes an interesting sparse network
implementation. The target nodes of all edges in the network are stored in a single
array, as are the corresponding weights. An additional array stores the location of
edges associated with each node in them. The memory footprint of this kind of
implementation is truly minimal. Seek operations can be performed in logarithmic
time, as the edge sets are stored as ordered. Iteration over the neighbours of a node
is very fast, as only sequential memory access is needed. However, a major problem
with this implementation is the efficiency of adding edges into the network. All the
following edges in the huge arrays have to be displaced in order to make room for a
new one. The time requirement of such an operation is thus O(E), where E is the
total number of edges in the network. Hence, the cumulative cost of constructing
a network with E nodes is O(E2), unless nodes and edges are added in a strictly
ordered fashion.



Keith Briggs has published a sparse network implementation [20] based on the
chaining hash table of GLib [21]. It has the interesting feature that all the edges
in a network are stored in a single table. Ideally, accessing a given edge could be
very fast, as only one access of possibly non-cached memory is needed. However,
following at least one additional pointer is needed because of the chaining im-
plementation of the hash table. In addition, there is no efficient way of iterating
through the neighbourhood of a node in this implementation.

4.3.1. Memory footprint. The space efficiency of an implementation places a
fundamental limit on the size of the networks that can be studied efficiently. This
limit is quite hard because, in general, complex network simulations cannot be
efficiently distributed over several distinct memory spaces in e.g. a networked com-
puter cluster. This is due to the inherent high dimensionality of networks: a high
proportion of edges would inevitably be between nodes in different memory spaces.
Following such edges would then cause a latency orders of magnitude larger than
that of a cache miss.

In Table 1, the per-node and per-edge memory requirements of several network
implementations are presented. It has been assumed that both the indices of nodes
and the weigths of the edges are represented by a single machine word. In addition,
the dynamic memory allocation overhead is assumed to be two machine words as
in [8], but in such a way that all sizes of memory chunks can be allocated without
waste of space. In the array-based implementations, the allocation overhead of the
array is included in the node’s memory requirement. Thus, nodes with no associated
edges would in reality require two machine words less memory.

In addition to the implementation based on the linear probing hash table and
the ones by the other authors mentioned above, two hypothetical implementations
are included in the Table 1. In the first one, the edge sets are packed arrays as
described in the Section 3, and in the second they are STL hash tables used in the
benchmarks of section 4.

5. Conclusion

By utilizing cache-aware data structures, we have been able to introduce a net-
work representation that performs very much better than data structures found
in common programming language libraries. In addition, the memory footprint of
the basic data structure used, i.e. the linear hash table, is very low. The static
part of the structure that is stored in the node vector only consists of a pointer,
number of elements, and the table size. The first two are essentially identical to
the “minimum” implementation of edge set as a packed array. The last, in turn,
can be made to occupy only a few bits. This is because we can constrain ourselves
to table lengths of powers of two, and thus only the power — the 2-based loga-
rithm of the table length — has to be stored.1 The dynamic part of the structure
containing the edges differs only from the absolute minimum — the space required
for the storage of the target node and weight — by the factor of average fill rate
α. In fact, the difference can be even smaller: the table sizes are powers of two,
and practical memory allocators such as the one presented in Ref. [8] can usually
provide these sizes without any waste of space.

1In fact, Fibonacci hashing can be implemented very efficiently by utilizing bit-shifting in which this
power is used.



Table 1. Memory footprint of different sparse network im-

plementations, measured in machine words per edge and per

node. See the text for details and assumptions.

Implementation Node Edge

Linear probing 5 2/α a

Knuth [18] 8 b 5 c

IGraph [19] 1 2 d

Briggs [20] 2 e 10 + 1/α b f g

Packed array 4 2 d

Chaining STL hash table [17] 10 5 + 1/α g h

aIf, for example, the maximum fill rate were 0.8 and the
degree distribution even, the average fill rate α would be
0.6.

bFor fairness of comparison, all node indices have been
converted to machine words.

cDue to implementation details, allocation overhead is not
included.

dIn practice, not all sizes of memory chunks are available
for allocation, and thus some waste of space (correspond-
ing to a fill rate less than unity) is inevitable. This does
not apply to the linear probing hash table, as its size is
constrained to powers of two, which are usually available.

eUsed for node’s degree and degree distribution

fOne machine word has been added for otherwise absent
weigth.

gAverage fill rate α can be reasonably approximated as
unity.

hThe minimum table size is 53 machine words.

In practice, we have utilized a network implementation based on the linear prob-
ing hash table in the study of very large social networks [4,5]. The results were very
satisfactory so that the primary test platform used for this Article was utilized for
all the simulations in [4, 5] with no cost on the memory footprint or performance.

The results of the benchmarks clearly show that some data structures optimized
for high cache miss latencies perform considerably better than conventional ones
on modern hardware. Of course, the extremely sparse nature of complex networks
makes their cache miss rates rather pathological. However, neither significant de-
crease in the latency of DRAM cells used in main memory nor any substitute
technology for them are in sight. The problem of cache miss latency is therefore
going to affect many other forms of computation, as the raw speed of processors is
still expected to grow. Luckily, some data structures and algorithms developed in
the past for external usage will probably be rather directly applicable as solutions.
For example, database management systems commonly use trees with a large num-
ber of children per node, in order to make a node to fit as exactly as possible on
a single memory page. In an analogous manner, nodes fitting exactly on proces-
sor cache lines would probably make memory-resident tree structures much more
efficient.

At least one modern processor architecture, the Cell, tackles with the problem
by introducing fast additional memory areas associated with each of its Synergistic
Processing Engines (SPE) under a direct control of the programmer. Such an area
serves as a kind of additional, manually controlled cache. Of course, the additional
complexity of the structure quite necessarily makes programming harder. Algo-
rithms developed for processing of data that can only be partially loaded to main
memory with the rest remaining on mass storage, should be rather easily utilized
on this kind of hardware.

Interestingly, in [22] a cache-aware hashing algorithm is introduced and tested on



the SPE, in addition to the more conventional Pentium 4. Although not suitable for
our application due to rather large memory overhead, the solution has some very
interesting features. In particular, vector instructions that have become available
on last microprocessor generations have been utilized for key comparison. Several
keys can thus be probed in parallel, providing performance enhancements both as
such and by eliminating conditional branches in the code.

We are currently working on a complete software library on network analysis (to
be published) based on the data structures described in this article. The library
will be in the form of an extension to a scripting language, the basic structures
and algorithms implemented in a low-level language for performance. This combi-
nation is expected to be able to combine high performance with easy usage and
the possibility to perform rapid experimentation on networks.
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