Problem 1. (pencil and paper / computer) (2 points)

(a) Suppose that you use the Monte Carlo method to estimate the value of a given quantity A. One simulation run gives you a single numerical value denoted by A_i. How can you obtain a reliable estimate of the true value of A and how can you calculate an estimate of the error?

(b) Write a program that computes an estimate of π using the "hit-or-miss" Monte Carlo method. The program should also calculate an error estimate σ (as you described in part (a)) and average deviation from the correct value ($\pi = 3.141592654$).

Do this by generating N uniformly distributed random points inside the square defined by $-R \leq x \leq R$ and $-R \leq y \leq R$. Calculate the number of points which are inside the circle $x^2 + y^2 = R^2$. For each value of N, perform $n = 1000$ independent measurements. The resulting average value

$$\pi_{est} = \langle \pi \rangle = \frac{1}{n} \sum_{i=0}^{n} \pi_i$$

is your MC estimate. The average deviation from the correct value is given by

$$\frac{1}{n} \sum_{i=0}^{n} |\pi_i - \pi|$$

Plot your estimate of π, the error estimate σ and the average absolute error as a function of N for $N = 1000 - 30000$ (e.g. do a series of runs increasing N by 1000 at each round). What relation does the error estimate follow? What about the absolute error?
Problem 2. (computer)
Write a program which uses the "sample-mean" method to compute the integral

\[I = \int_{0}^{2} \left\{ \int_{3}^{6} \left[\int_{-1}^{1} (yx^2 + z\ln y + e^x)dx \right] dy \right\} dz \]

Include the calculation of an error estimate in your program. Show the results as a function of \(N \) (number of random points). The correct answer is \(I \approx 49.9213 \).

Problem 3 (computer)
(a) Write a program which uses importance sampling to compute the integral

\[I = \int_{1}^{2} (2x^8 - 1)dx \]

Plot the result as a function of \(N \).

(b) Compute the same integral using the sample mean method. Plot the absolute error \(|I_{est} - I| \) as a function of \(N \) for the results obtained using the sample mean method and for the results obtained in (a) using importance sampling. Which method is better?

Problem 4. (computer)
Write a program which simulates the process of radioactive decay. You are given a sample of \(N = 20000 \) radioactive nuclei each of which decays at a rate \(p \) per second. What is the half-life of the sample if \(p = 0.4 \)?

Calculate the estimate of the half-life \(\langle t_{1/2} \rangle \) from \(m \) independent measurements and include an estimation of the error in your program. Increase \(m \) until you reach an accuracy of at least 0.005.